首页 > 选课中心 > 数据分析 > 【快班】黄美灵的Spark ML机器学习实战
【快班】黄美灵的Spark ML机器学习实战
此课程所属 【hadoop大数据工程师职业方向】, 【人工智能职业方向】, 【数据分析师专业方向】专业,报名专业套餐,可享受0元学习特惠!点击了解详情
随报随学 共10课 ★☆☆
开课时间 课程周期 难易度
招生中

立即报名
模型 算法 基础 机器学习 Spark
课程介绍
本课程主要讲解基于Spark 2.x的ML,ML是相比MLlib更高级的机器学习库,相比MLlib更加高效、快捷;ML实现了常用的机器学习,如:聚类、分类、回归等算法。本课拒绝枯燥的讲述,将循序渐进从Spark2.x的基础知识开始,然后再透彻讲解各个算法的理论、详细展示Spark实现,最后均会通过实例进行解析实战,帮助大家真正从理论到实践全面掌握Spark ML分布式机器学习。

通过该课程的学习,同学们可以全面掌握Spark ML机器学习,进而能够在实际工作中进行ML的应用开发和定制开发。且该课程优异毕业生均可获得老师内推机会,职位:数据挖掘工程师,就职企业:久邦数码、唯品会、腾讯等。掌握技术,高薪就业,课程等待你的加入!
课程大纲
第一课 Spark ML基础入门
1、Spark介绍
2、Spark ML介绍
3、课程的基础环境
4、Spark SparkSession
5、Spark Datasets操作
6、Datasets操作的代码实操

第二课 Spark ML Pipelines(ML管道)
1、Pipelines的主要概念
2、Pipelines实例讲解
3、ML操作的代码实操
4、使用 ML Pipeline 构建机器学习工作流案例展示
5、实例的代码实操

第三课 Spark ML数学基础
1、ML矩阵向量计算
2、分类效果评估指标及ML实现详解
3、交叉-验证方法及ML实现详解
4、实例的代码实操

第四课 Spark ML特征的提取、转换和选择
1、特征的提取及ML实现详解
2、特征的转换及ML实现详解
3、特征的选择及ML实现详解
4、实例的代码实操

第五课 Spark ML线性回归/逻辑回归算法
1、线性回归算法
2、逻辑回归算法
3、ML回归算法参数详解
4、ML实例
5、实例的代码实操

第六课 Spark ML决策树/随机森林/GBDT算法
1、决策树算法
2、随机森林算法
3、GDBT算法
4、ML树模型参数详解
5、ML实例
6、实例的代码实操

第七课 Spark ML KMeans聚类算法
1、KMeans聚类算法
2、ML KMeans模型参数详解
3、ML实例
4、实例的代码实操

第八课 Spark ML LDA主题聚类算法
1、LDA主题聚类算法
2、ML LDA主题聚类模型参数详解
3、ML实例
4、实例的代码实操

第九课 Spark ML协同过滤推荐算法
1、协同过滤推荐算法
2、ML协同过滤分布式实现逻辑
3、ML协同过滤源码开发
4、实现实例
5、实例的代码实操

第十课 大型案例:基于Spark的推荐模型开发
1、案例背景
2、架构设计
3、数据准备
4、模型训练
5、模型预测
6、脚本封装
授课讲师
黄美灵,Spark爱好者,现从事移动互联网的计算广告和数据变现工作,专注Spark机器学习在计算广告中的研究和实践。现著有:《Spark MLlib机器学习:算法、源码及实战详解》
CSDN博客专家:http://blog.csdn.net/sunbow0
课程环境
Spark2.0, Spark2.1, Spark2.2
授课对象
对spark有兴趣,有志从事数据分析,数据挖掘工作方向的朋友
收获预期
通过该课程的学习,同学们可以全面掌握Spark2.0 ML机器学习,进而能够在实际工作中进行ML的应用开发和定制开发。该课程优异毕业生均可获得老师内推机会,职位:数据挖掘工程师,就职企业:久邦数码、唯品会、腾讯等。
课程学费
学费:400元(固定学费:300元 + 逆向学费:100元)
新颖的课程收费形式:“逆向收费”约等于免费学习,课程收取300元固定收费 + 100元逆向学费,学习圆满则全额奖励返还给学员!
特别说明如下
本门课程本来打算完全免费,某位大神曾经说过“成功就是正确的方向再加上适度的压力”。考虑到讲师本身要付出巨大的劳动,为了防止一些朋友在学习途中半途而废,浪费了讲师的付出,为此我们计划模仿某些健身课程,使用“逆向收费”的方法。 在 报名时每位报名者收取400元,其中300元为固定 收费,另外100元是暂存学费,即如果学员能完成全部课程要求,包括完成全部的书面作业,则100元全款退回。如果学员未能坚持到完全所有的学习计划任务,则会被扣款。期望这种方式可以转化为大家强烈的学习愿望和驱动力!
课程授课方式

1、 学习方式:老师发布教学资料、教材,幻灯片和视频,学员通过网络下载学习。同时通过论坛互动中老师对学员进行指导及学员之间相互交流。

2、 学习作业:每课均有布置课后作业,学员完成书面作业后则可进入下一课学习。

3、 老师辅导:通过论坛站内信及邮件等多种方式与老师进行一对一互动。

4、 完成课程:最后一课作业交纳后,老师完成作业批改,即可完成课程并取回相应剩余的逆向学费。

联系我们
咨询Email :edu01@dataguru.cnedu02@dataguru.cn
课程入门讨论咨询QQ群:706821899(群内有培训公开课视频供大家免费观看)
咨询QQ: 点击这里给我发消息 点击这里给我发消息
您是否对此课程还有疑问,那么请 点击进入FAQ,您的问题将基本得到解答
全国统一咨询热线: 4008-010-006
最新技术热点、 最新行业资讯,最新培训课程信息,尽在炼数成金官方微信,低成本传递高端知识!技术成就梦想!欢迎关注!
打开微信,使用扫一扫功能,即刻关注炼数成金官方微信账户,不容错过的精彩,期待您的体验!!!

授课老师

其他快班课程

【快班】Node.js Web开发实战
【快班】漫步华尔街
【快班】目标检测模型YOLOV3原理及实战
【快班】Cloudera Hadoop管理认证实战
【快班】【强化学习系列】强化视觉导航技术导引
【快班】PostgreSQL初识与提高
【快班】区块链新时代:技术原理与实操
【快班】Python全栈学习——Python基础及Web开发
【快班】端到端(End TO End)--由传统方法到深度学习
【快班】【百万年薪系列】宽度学习实战及算法解析
【快班】敏捷Agile快速入门
【快班】安全渗透测试工具之Burp Suite使用精讲
【快班】Python全栈学习——Python自动化测试
【快班】系统运维之基础服务进阶实战
【快班】Elastic Stack实战
【快班】测试架构师核心技术
【快班】python网络爬虫应用实战
【快班】locust性能测试实战
【快班】大话流式处理系统 Flink 核心原理
【快班】PyTorch – 深度学习全栈工程师进阶案例实战
【快班】MySQL高可用原理、架构与实战
【快班】快速成为深度学习全栈工程师
【快班】Python数据可视化实战
【快班】股票投资高手武器系列之缠论系统
【快班】基于R的Kaggle实战案例详解
【快班】计算机视觉:从入门到精通,极限剖析图像识别学习算法
【快班】黄金Quant工——量化金融分析师入门
【快班】DL4CV实战——构建基于深度学习的智能图像识别系统
【快班】Web全栈开发理论与实践
【快班】Oracle DB Performance Tuning(DSI系列Ⅳ)
【快班】精准安防场景理解及语义分割
【快班】【免费公开课】Python 的安装与部署
【快班】计算机视觉算法详解与实战开发
【快班】Python金融业数据化运营实战
【快班】人脸识别精准安防讲习班
【快班】Oracle SQL Tuning(DSI系列Ⅲ)
【快班】人脸识别90天速成特训班
【快班】Python3入门到精通实战特训
【快班】基于软件学习数据挖掘算法与案例
【快班】股票投资基础之技术分析
【快班】股票投资基础之基本面分析
【快班】Python机器学习
【快班】python3接口自动化测试开发实战
【快班】【免费公开课】《Hadoop入门手册》——CDH集群安装
【快班】Datastage基础及开发实践
【快班】Tensorflow工程师职场实战技
【快班】互联网金融中的交易反欺诈模型
【快班】OpenAI强化学习实战
【快班】Node.js项目实战:从编写代码到服务器部署
【快班】Java Web开发精讲
【快班】JavaScript从入门到精通
【快班】让服务飞起来:实时计算及其应用
【快班】突击pyspark:数据挖掘的力量倍增器
【快班】赢在大数据-人工智能的应用实践
【快班】【免费公开课】《数据科学入门手册》——DSX架构与部署
【快班】【免费公开课】数据科学无难事
【快班】【免费公开课】《Hadoop入门手册》之 虚拟机的安装和使用
【快班】【免费公开课】玩转数据艺术-数据展示技巧应用实战
【快班】【免费公开课】玩转数据科学——IBM DSX
【快班】【免费公开课】《Hadoop入门手册》——Apache Hadoop集群安装
【快班】【免费公开课】赢在大数据-数据化运营落地实战
【快班】大数据管理
【快班】Streams流计算引航公开课
【快班】抽样调查
【快班】LATEX公式排版系统引航
【快班】Watson Analytics数据分析应用实战公开课
【快班】数据陷阱解读
【快班】R七种武器之文本挖掘包tm
【快班】R七种武器之可视化JS库HTMLWidgets包
【快班】R七种武器之数据加工厂plyr
【快班】R七种武器之交互化展示包shiny
【快班】R七种武器之网络爬虫RCurl
【快班】R七种武器之数据可视化包ggplot2
【快班】R七种武器之金融数据分析quantmod
【快班】Java经验谈
【快班】Go语言实战编程
【快班】DB2 V11新特性全解析
【快班】DB2数据库引航公开课
【快班】STATA统计分析入门
【快班】初识正则表达式
【快班】perl语言入门
【快班】Scala语言入门
【快班】Spark企业级大数据项目实战
【快班】知识图谱实战
【快班】【百万年薪系列】视觉的盛宴:深度玩转人脸识别
【快班】深入浅出设计模式
【快班】Oracle特殊恢复原理与实战(DSI系列)
【快班】Puppet 运维自动化
【快班】ROS机器人操作系统实战
【快班】开启智慧眼-深度玩转计算机视觉与机器认知
【快班】 深度学习框架Keras学习与应用
【快班】zabbix企业级实践
【快班】Qt编程快速入门
【快班】python web框架企业实战详解
【快班】python魔鬼训练营
【快班】数据治理及数据仓库模型设计
【快班】金融的人工智能革命
【快班】软件架构必备基础
【快班】MySQL性能优化最佳实践
【快班】Spark源码导读
【快班】Spark大数据平台应用实战
【快班】金融时间序列分析
【快班】左飞的机器学习十八般算法武艺详解
【快班】计算机视觉与深度学习实战
【快班】Hadoop集群原理与运维实践
【快班】OpenCV计算机视觉产品实战
【快班】DevSecOps安全交付应用实战
【快班】JavaScript突击-从精通到项目实战
【快班】R语言魔鬼训练营
【快班】基于案例学习bash脚本编程
【快班】量化投资基础计算与模型
【快班】老板说服术之玩转数据展示
【快班】区块链技术从入门到精通
【快班】Python机器学习Kaggle案例实战
【快班】深入浅出Git
【快班】数据库系统实现技术内幕
【快班】Goldengate从入门到精通
【快班】PL/SQL实战魔鬼训练营
【快班】Oracle 12c特性解读-容器数据库和灾备
【快班】Oracle DBA从小白到入职实战应用
【快班】MySQL DBA从小白到大神实战
【快班】深入浅出Oracle
【快班】深度学习PostgreSQL
【快班】Oracle 12C RAC集群原理与管理实战
【快班】Mycat从入门到精通
【快班】基于案例学SQL优化
【快班】ELKStack及Solr企业级搜索引擎实战
【快班】大型电商分布式系统实践
【快班】深入理解Storm与大数据实战
【快班】深入浅出Spring
【快班】Java魔鬼训练营
【快班】面试突击-数据结构与算法速成
【快班】JAVA极客特训
【快班】深入JVM内核—原理、诊断与优化
【快班】Excel数据分析师突击—从入门到精通到项目实战
【快班】人工智能前沿系列之生成式对抗网络
【快班】基于案例学习时间序列分析
【快班】自己动手实践神经网络
【快班】 深度学习框架Tensorflow学习与应用
【快班】自然语言处理软件实验
【快班】Redis技术实战
【快班】推荐系统
【快班】Zookeeper分布式系统开发实战
【快班】Python数据分析案例实战
【快班】Python金融投资分析实践
【快班】Kafka原理剖析及实战演练
【快班】实战Java高并发程序设计
【快班】MongoDB实战
【快班】应用系统架构优化方法与案例实战
【快班】金融市场基础
【快班】Python自然语言分析
【快班】Python突击—从入门到精通到项目实战
【快班】HBase从入门到精通
【快班】Hive数据仓库实践
【快班】Hadoop数据分析平台
【快班】数据分析与SAS
【快班】比特币
【快班】机器读心术之文本挖掘与自然语言处理
【快班】机器读心术之神经网络与深度学习
【快班】快速上手Jmeter性能测试工具
【快班】软件性能测试
【快班】软件自动化测试Selenium2
【快班】大数据必知的java基础
【快班】快速数据挖掘平台RapidMiner
【快班】R语言编程技巧
【快班】深入BI之Kettle篇
【快班】基于案例学Java服务器端程序设计
【快班】Scala从基础到开发实战
【快班】供应链物流—电商发展的“核”动力
【快班】详解SQL与PL/SQL
【快班】Oracle职业直通车
【快班】深度玩转Excel
【快班】Hadoop应用开发实战案例
【快班】大数据的Linux基础
【快班】机器学习
【快班】量化投资
【快班】SPSS数据分析入门与提高
【快班】Python数据分析
【快班】NoSQL与NewSQL数据库引航
【快班】大数据算法导论
【快班】大数据的矩阵计算基础
【快班】R语言数据分析、展现与实例
【快班】大数据的统计学基础

GMT+8, 2020-10-29 21:12 , Processed in 0.090737 second(s), 32 queries .